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A The Relationship Between G-IA and S-IA

Proposition B.1 is implied by Theorem 1 and Theorem 1 of HR. We give a proof that contains

terminologies defined in HR but does not rely on Theorem 1. Note that when 𝑄 = 1, for

any 𝑛 ∈ {1, 2, ...} with 𝑆* ∩ 𝑆𝑛 ̸= ∅ and each 𝑎 ∈ 𝐴, 𝐶𝑎
𝑛 is either 0 or 1.

Proposition A.1: When 𝑄 = 1, for any 𝑛 ∈ {1, 2, ...} with 𝑆* ∩ 𝑆𝑛 ̸= ∅ and each 𝑎 ∈ 𝐴,

𝐶𝑎
𝑛 = 1 if and only if 𝑠 = Π𝑡(𝑓) ∈ 𝑆𝑛 with 𝑓 ∈ 𝐹𝑎 satisfies (E) and (L) at some Π𝑡 in the

S-IA.

Proof of Proposition A.1: (⇐=) Suppose 𝑠 = Π𝑡(𝑓) ∈ 𝑆𝑛 with 𝑓 ∈ 𝐹𝑎 satisfies (E) and

(L) at some Π𝑡 in the S-IA. Let 𝑆 ′ ⊂ 𝑆 be the block that contains 𝑠. By Corollary 3 of HR,

all type 4 slots in 𝑆 ′ are removed with flights of 𝑎. Note that Π1 is ordered and feasible.

Since the first slot of 𝑆 ′ satisfies (E) at Π1, none of these flights, including 𝑓 , can feasibly use

a slot earlier than 𝑠. Therefore, 𝑠 must be occupied by a flight of 𝑎 at Π𝑎, so |𝑆𝑛 ∩ 𝑆𝑎| = 1.

Proposition 2 implies a flight that obtains a slot in an earlier block at Π1 would also

obtain a slot in the same block at Π𝑎. Corollary 3 in HR implies all flights in 𝐹[𝑠1,𝑒𝑓 ) that

obtain a slot in 𝑆 ′ at Π1 belong to 𝑎, so each flight in 𝐹[𝑠1,𝑒𝑓 ) ∖𝐹𝑎 obtains a slot in an earlier

block. This implies |𝐹Π𝑎,𝑆≥𝑛 ∩𝐹[𝑠1,𝑒𝑓 ) ∖𝐹𝑎| = 0. By Lemma 4(b) of HR, 𝑠 satisfies (L) at Π1.

This implies 𝐹[𝑒𝑓 ,𝑠𝑛] ∖ 𝐹𝑎 = ∅. Therefore, we have |𝐹Π𝑎,𝑆≥𝑛 ∩ 𝐹[𝑒𝑓 ,𝑠𝑛] ∖ 𝐹𝑎| = 0. To sum up,

we have

𝐶𝑎
𝑛 = 𝑚𝑖𝑛{|𝑆𝑛 ∩ 𝑆𝑎|,𝑚𝑎𝑥[|𝑆𝑛| − |𝐹Π𝑎,𝑆≥𝑛 ∩ 𝐹[𝑠1,𝑠𝑛] ∖ 𝐹𝑎|, 0]} = 𝑚𝑖𝑛{1,𝑚𝑎𝑥[1, 0]} = 1.

*Li Anmin Advanced Institute of Finance and Economics, Liaoning University, China. Corresponding
author. E-mail: kenho@lnu.edu.cn.

†School of Business, Stevens Institute of Technology, USA. E-mail: arodivil@stevens.edu.

1



(=⇒) Suppose 𝑠 = Π𝑇 (𝑓) ∈ 𝑆𝑛 with 𝑓 ∈ 𝐹𝑎 fails (E) and (L) at Π𝑇 in the S-IA. By

Theorem 1 of HR, 𝑠 could be used by different airlines at different feasible and non-wasteful

landing schedules. If 𝑠 is not in 𝑆𝑎 , then

𝐶𝑎
𝑛 = 𝑚𝑖𝑛{0,𝑚𝑎𝑥[|𝑆𝑛| − |𝐹Π𝑎,𝑆≥𝑛 ∩ 𝐹[𝑠1,𝑠𝑛] ∖ 𝐹𝑎|, 0]} = 0.

Suppose 𝑠 ∈ 𝑆𝑎. Now |𝑆𝑛 ∩ 𝑆𝑎| = 1. Suppose the number of slots that 𝑎 obtains in 𝑆<𝑛 at

Π1 is 𝑥, and the number of slots that 𝑎 obtains in 𝑆<𝑛 at Π𝑎 is 𝑦. Lemma 2 implies that

𝑥 ≤ 𝑦. By Proposition 1 of HR, the sets of occupied slots at Π1 and Π𝑎 are the same.

Case 1: If 𝑥 < 𝑦, then a flight of another airline that obtains a slot in 𝑆<𝑛 at Π1 obtains

a slot in 𝑆≥𝑛 at Π𝑎.

Case 1: Suppose 𝑥 = 𝑦. Lemma 1 implies that at Π𝑎, the flights of 𝑎 obtain the maximum

number of slots that they can obtain in 𝑆<𝑛 at any feasible and non-wasteful landing schedule,

and thus flights in 𝐹[𝑠1,𝑠𝑛] ∖ 𝐹𝑎 obtain the minimum number of slots that they can obtain

in 𝑆<𝑛 at any feasible and non-wasteful landing schedule. Now 𝑠 can be feasibly and non-

wastefully used by another airline means there must exist a flight that can use 𝑠 but obtain

a slot in 𝑆≥𝑛 at Π𝑎.

In both cases, |𝐹Π𝑎,𝑆≥𝑛 ∩ 𝐹[𝑠1,𝑠𝑛] ∖ 𝐹𝑎| ≥ 1. Therefore, |𝑆𝑛| − |𝐹Π𝑎,𝑆≥𝑛 ∩ 𝐹[𝑠1,𝑠𝑛] ∖ 𝐹𝑎| ≤ 0,

we have 𝐶𝑎
𝑛 = 𝑚𝑖𝑛{1, 0} = 0. �

B A Class of Lottery Mechanisms

In the Online Appendix of HR, they provide a lottery mechanism that uses a random or-

dering algorithm that provides better incentives in some cases. We generalize their lottery

mechanism in this section.

An airline can freeze its flights in slots that it owns, and flights might be canceled in the

GDP or before the GDP starts.1 For each 𝑎 ∈ 𝐴, let 𝑘𝑎 be the number of frozen flights of

𝑎, 𝑚𝑎 be the number of canceled flights of 𝑎, and 𝑜𝑎 be the number of originally scheduled

flights of 𝑎. 𝐹𝑎 is indeed the set of non-canceled and non-frozen flights of 𝑎. We assume

𝑜𝑎 = 𝑘𝑎 +𝑚𝑎 + |𝐹𝑎|. Let 𝑛𝑎 = 𝑚𝑎 + |𝐹𝑎| and 𝑛 = (𝑛𝑎)𝑎∈𝐴. We extend an instance in the LP

model by including 𝑛, so 𝐼 = (𝐴,𝐹†, 𝑆,Φ†, 𝑒, 𝑅, 𝑛).

A (direct) lottery mechanism selects a schedule lottery 𝜑(𝐼) for each instance 𝐼. We define

a class of lottery mechanisms: a general multiple trading cycles mechanism with random

ordering process (GMTCR) is a lottery mechanism that selects a schedule lottery for each 𝐼

1“Airlines will also have the capability to freeze flights they don’t want moved up through the submission
of an earliest time of arrival” (?).
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using a random ordering process and the GMTC algorithm:

Random Ordering Process: Randomly select an ordering 𝑧𝐸𝐴 from a given distribution

over 𝑍𝐸 ∩ 𝑍𝐴 and call it 𝑧.

GMTC Algorithm: As in the main text.

Corollary A.1: Any GMTCR is ex post feasible, ex post non-wasteful, ex post individ-

ually rational, and ex post Pareto efficient.2

This corollary is immediate from Proposition 4. We define the general multiple trading cy-

cles mechanism with random ordering algorithm, 𝜑𝐺𝑀 , to be a lottery mechanism that selects

a schedule lottery for each 𝐼 using the random ordering algorithm and the GMTC algorithm.

Random Ordering Algorithm: Create 𝑛𝑎 copies of 𝑎 for each 𝑎 ∈ 𝐴. Draw a copy at

a time without replacement. Denote the first copy of 𝑎 by 𝑎(1), the second copy of 𝑎 by

𝑎(2), and so on. Denote the resultant ordering by 𝑧⋆. For each 𝑎, eliminate each 𝑎(𝑖) with

𝑖 > |𝐹𝑎| from 𝑧⋆ and denote the resultant ordering by 𝑧.

GMTC Algorithm: As in the main text.
HR indicate that assigning 𝑛𝑎 slots to each 𝑎 ∈ 𝐴 is consistent with the current mecha-

nism. 𝜑𝐺𝑀 only assigns |𝐹𝑎| slots to each 𝑎 ∈ 𝐴. We suggest a supplementary algorithm for

𝜑𝐺𝑀 . Suppose 𝑧⋆ and 𝑧 realized in the random ordering algorithm, and 𝜑𝑧(𝐼) is the realized

landing schedule of 𝜑𝐺𝑀 . Let Φ𝜑𝑧(𝐼) be the induced slot ownership function of 𝜑𝑧(𝐼). The

following supplementary algorithm generalizes the one in HR and amends Φ𝜑𝑧(𝐼) by assign-

ing an additional 𝑀𝑎 slots to each 𝑎 ∈ 𝐴. Denote the resultant slot ownership function by

Φ𝜑𝑧⋆ (𝐼).

For each 𝑎, eliminate each 𝑎(𝑖) with 𝑖 ≤ |𝐹𝑎| from 𝑧⋆ and denote the resultant ordering by

z1. Let 𝑉1 = 𝑆 ∖𝑆1. For 𝑡 ∈ {1, 2, ...}, repeat the following: Find 𝑠, which is the earliest slot

with the lowest index in 𝑉𝑡 ∩𝑆𝐴 that satisfies the following requirement: 𝑠 ∈ 𝑆𝑎 for some 𝑎

and 𝑎 has a surrogate in z𝑡. Assign the slot to 𝑎 and remove the last surrogate of 𝑎 from z𝑡.

Update z𝑡 to z𝑡+1 and 𝑉 𝑡 to 𝑉 𝑡+1. Stop if no slot satisfies the above requirement. If there is

no remaining surrogate, stop; otherwise, denote the resultant ordering by z𝑇 and assign the

earliest unassigned slots (start from the lowest indices) to the airlines sequentially according

to z𝑇 .

C Extra Examples

Example C.1:

2A lottery mechanism is ex post feasible, ex post non-wasteful, ex post individually rational, and ex post

Pareto efficient if for any instance, it only gives positive probabilities to landing schedules that are feasible,
non-wasteful, individually rational, and Pareto efficient, respectively.
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𝐹 𝑓𝑎,1 𝑓𝑎,2 𝑓𝑏,1 𝑓𝑏,2

𝑒 1 3 4 1

𝑅 1 2 1 2

𝑒′ 1 4 4 1

𝑆 𝑠11 𝑠12 𝑠13 𝑠14 𝑠15

𝜙𝐺𝑍(𝐼) 𝑓𝑏,2 𝑓𝑎,1 𝑓𝑎,2 𝑓𝑏,1

𝜙𝐺𝑍(𝐼 ′) 𝑓𝑎,1 𝑓𝑏,2 𝑓𝑏,1 𝑓𝑎,2

This example is from HR, and we use it to show 𝜙𝐺𝑍 is not strategy-proof.3 Suppose

𝜙𝐺𝑍 is employed and 𝑧 = 𝑏(1), 𝑎(1), 𝑏(2), 𝑎(2). 𝐶𝑎
3 = 1 and 𝐶𝑏

4 = 1. In step 1, 𝑠14 ∈
(𝑆1 ∖𝑆𝑢𝑐,1 ∩𝑆4)∩ (𝑆𝑏 ∪𝑆−𝐴 ∪𝑆ZZ𝐴1). Because 𝐶𝑏

4 = 1, now 𝑏(1) represents 𝑓𝑏,2, 𝑏(2) represents

𝑓𝑏,1, and 𝑠𝑓𝑏,1 = 𝑠14. 𝑏(1) and 𝑠11 form a cycle. In step 2, (𝑎(1), 𝑠12) is a cycle. In step 3,

(𝑏(2), 𝑠14) is a cycle. In step 4, 𝑠13 ∈ (𝑆4 ∖ 𝑆𝑢𝑐,2 ∩ 𝑆3) ∩ (𝑆𝑎 ∪ 𝑆−𝐴 ∪ 𝑆ZZ𝐴4). Because 𝐶𝑎
3 = 1,

𝑎(2) represents 𝑓𝑎,2 and 𝑠𝑓𝑎,2 = 𝑠13. 𝑎(2) and 𝑠13 form a cycle.

Denote the instance where 𝑎 reports 𝑒′𝑓𝑎1 = 1 and 𝑒′𝑓𝑎2 = 4 by 𝐼 ′. In step 1, (𝑏(1), 𝑠14) is

a cycle. In step 2, (𝑎(1), 𝑠11) is a cycle. In step 3, (𝑏(2), 𝑠12) is a cycle. In step 4, (𝑎(2), 𝑠15)

is a cycle. By misreporting the earliest feasible arrival times of its flights, 𝑎 obtains slot 𝑠11
instead of 𝑠12 for 𝑓𝑎,1.
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Example C.2:

𝐹 𝑓𝑎,1 𝑓𝑎,2 𝑓𝑏,1 𝑓𝑏,2 𝑓𝑐,1

𝑒 4 1 3 1 5

𝑅 1 2 1 2 1

𝑆 𝑠11 𝑠12 𝑠13 𝑠14 𝑠15 𝑠16

𝜙𝐺𝑍(𝐼) 𝑓𝑏,2 𝑓𝑎,2 𝑓𝑏,1 𝑓𝑎,1 𝑓𝑐,1

𝜙𝐺𝑍(𝐼 ′) 𝑓𝑎,2 𝑓𝑏,2 𝑓𝑏,1 𝑓𝑎,1 𝑓𝑐,1

This example shows that 𝜙𝐺𝑍 is manipulable via slot destruction.5 Suppose 𝜙𝐺𝑍 is

employed and 𝑧 = 𝑏(1), 𝑎(1), 𝑎(2), 𝑏(2), 𝑐(1). Suppose 𝑆𝑎 = {𝑠15}, 𝑆𝑏 = {𝑠16}, and 𝑆𝑐 =

{𝑠13, 𝑠14}. 𝐶𝑎
4 = 1, 𝐶𝑏

3 = 1, and 𝐶𝑐
5 = 1. In step 1, (𝑎(1), 𝑠14, 𝑐(1), 𝑠15) is a cycle, while 𝑏(1)

points to 𝑠13 ∈ 𝑆𝑐. In step 2, 𝑐 ∈ ZZ𝐴2, so 𝑠13 ∈ (𝑆2 ∖ 𝑆𝑢𝑐,1 ∩ 𝑆3) ∩ (𝑆𝑏 ∪ 𝑆−𝐴 ∪ 𝑆ZZ𝐴2). Because

𝐶𝑏
3 = 1, now 𝑏(1) represents 𝑓𝑏,2, 𝑏(2) represents 𝑓𝑏,1, and 𝑠𝑓𝑏,1 = 𝑠13. 𝑏(1) and 𝑠11 form a cycle.

In step 3, (𝑎(2), 𝑠12) is a cycle. In step 4, (𝑏(2), 𝑠13) is a cycle.

Now suppose 𝑎 destroys 𝑠15 ∈ 𝑆𝑎. Denote the instance where 𝑠
1
5 is destroyed by 𝐼 ′. In step

1, (𝑏(1), 𝑠13, 𝑐(1), 𝑠16) is a cycle. In step 2, 𝑐 ∈ZZ𝐴2, so 𝑠14 ∈ (𝑆2 ∖ 𝑆𝑢𝑐,1 ∩ 𝑆4)∩ (𝑆𝑎 ∪ 𝑆−𝐴 ∪ 𝑆ZZ𝐴2).

Because 𝐶𝑎
4 = 1, now 𝑎(1) represents 𝑓𝑎,2, 𝑎(2) represents 𝑓𝑎,1, and 𝑠𝑓𝑎,1 = 𝑠14. 𝑎(1) and 𝑠11

form a cycle. In step 3, (𝑎(2), 𝑠14) is a cycle. In step 4, (𝑏(2), 𝑠12) is a cycle. By destroying 𝑠15,

𝑎 obtains slot 𝑠11 instead of 𝑠12 for 𝑓𝑎,2.

3The definition is unnecessary here. See HR for more details.
4By updating the earliest feasible arrival time of 𝑓𝑎,2 to 𝑠3 later, 𝑎 might also obtain 𝑠13.
5The definition is unnecessary here. See HR for more details.
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