Online Appendix for Dynamic College Admissions Problem

Ken C. Ho^{*}

August 31, 2021

Dynamic Core

A matching μ is period- $\mathbf{1}$ dominated by another matching $\tilde{\mu}$ via a coalition $L \subseteq S \cup U$ if (i) $\forall l \in L, i \in \tilde{\mu}^{t}(l)$ implies $l \in \tilde{\mu}^{t}(i)$ and $i \in L$, (ii) $\forall s \in L, \tilde{\mu}(s) \succsim_{s} \mu(s)$ and $\forall u \in L, \tilde{\mu} \succsim_{u} \mu$, and (iii) $\exists s \in L, \tilde{\mu}(s) \succ_{s} \mu(s)$ or $\exists u \in L, \tilde{\mu} \succ_{u} \mu$. A matching μ is period-2 dominated by another matching $\tilde{\mu}=\left(\mu^{1}, \tilde{\mu}^{2}\right)$ via a coalition $L \subseteq S \cup U$ if (i) $\forall s \in L, \tilde{\mu}^{2}(s)=u$ implies $s \in \tilde{\mu}^{2}(u) \backslash \mu^{1}(u)$ and $u \in L$, (ii) $\forall u \in L, s \in \tilde{\mu}^{2}(u) \backslash \mu^{1}(u)$ implies $\tilde{\mu}^{2}(s)=u$ and $s \in L$, (iii) $\forall s \in L, \tilde{\mu}(s) \succsim_{s} \mu(s)$ and $\forall u \in L, \tilde{\mu} \succsim_{u} \mu$, and (iv) $\exists s \in L, \tilde{\mu}(s) \succ_{s} \mu(s)$ or $\exists u \in L$, $\tilde{\mu} \succ_{u} \mu$. The set of matchings that are not period- t dominated by any other matching is the dynamic core. It is easy to see that the dynamic core is inside the Pareto set. ${ }^{1}$ Recall that for any acceptable matchings μ and $\tilde{\mu}, \mu^{2}(u) P_{u}^{*} \tilde{\mu}^{2}(u)$ if and only if $\mu \succ_{u} \tilde{\mu}$, and $\mu^{2}(u) R_{u}^{*} \tilde{\mu}^{2}(u)$ if and only if $\mu \succsim_{u} \tilde{\mu}$.
Theorem A.1: Under A1, a matching is in the dynamic core if and only if it is dynamically stable.
Proof of Theorem A.1: (\Longrightarrow) Suppose μ is not individually rational. If $\emptyset \succ_{s} \mu(s)$ for some $s \in S$, then μ is not in the dynamic core since it is period-1 dominated by a matching $\tilde{\mu}$ with $\tilde{\mu}(s)=\emptyset$ via a coalition $L=\{s\}$. If $\emptyset \succ_{u} \mu(u)$ for some $u \in U$, then it is period- 1 dominated by a matching $\tilde{\mu}$ with $\tilde{\mu}^{1}(u)=\emptyset$ and $\tilde{\mu}^{2}(u)=\emptyset$ via a coalition $L=\{u\}$.

[^0]Suppose μ is individually rational but blocked by some $s \in S$ and $u \in U$. Note that μ eliminates justified internal envy. Recall that A1 implies $S_{u}=S$ for $u \in U$. Therefore, μ strongly eliminates justified internal envy. When s and u period- 1 block μ, either s is not matched with u at μ, or s is matched with u at μ and takes an empty position in another period (in this situation, the set of students that are matched with u is unchanged). The situation where s is matched with u at μ and takes an occupied position in another period is incompatible with the fact that μ strongly eliminates justified internal envy, which says that there does not exist $s, s^{\prime} \in \mu^{2}(u)$ such that $s P_{u} s^{\prime}$ and $\mu\left(s^{\prime}\right) \succ_{s} \mu(s)$.

Suppose μ is period- 1 blocked by $\{s, u\}$ with a type- 1 plan. Then it is period- 1 dominated by a matching $\tilde{\mu}$ with $\tilde{\mu}(s)=u u, \tilde{\mu}^{1}(u)=s \cup \mu^{1}(u) \backslash \sigma$, and $\tilde{\mu}^{2 \backslash 1}(u)=\mu^{2 \backslash 1}(u)$ via a coalition $L=u \cup s \cup \mu^{2}(u) \backslash \sigma .{ }^{2}$

Suppose μ is period- 1 blocked by $\{s, u\}$ with a type- 2 plan. Then it is period- 1 dominated by any matching $\tilde{\mu}$ with $\tilde{\mu}(s)=c u, \tilde{\mu}^{1}(u)=\mu^{1}(u)$, and $\tilde{\mu}^{2 \backslash 1}(u)=s \cup \mu^{2 \backslash 1}(u) \backslash \sigma$ via a coalition $L=u \cup s \cup \mu^{2}(u) \backslash \sigma$.

Suppose μ is period-2 blocked by $\{s, u\}$. Then it is period- 2 dominated by a matching $\tilde{\mu}$ with $\tilde{\mu}^{2}(s)=u$ and $\tilde{\mu}^{2}(u) \backslash \mu^{1}(u)=s \cup \mu^{2 \backslash 1}(u) \backslash \sigma$ via a coalition $L=u \cup s \cup \mu^{2 \backslash 1}(u) \backslash \sigma$.
(\Longleftarrow) Suppose μ is not in the dynamic core. Then μ is period- 1 or period-2 dominated by a matching $\tilde{\mu}$ via some coalition L, and hence some student s prefer $\tilde{\mu}(s)$ to $\mu(s)$ or some university prefer $\tilde{\mu}$ to μ. If μ is not individually rational, then it is not dynamically stable. Suppose μ satisfies individual rationality.

Case 1: Suppose μ is period-2 dominated by some matching $\tilde{\mu}=\left(\mu^{1}, \tilde{\mu}^{2}\right)$ via some coalition L.

Case 1.1: Suppose $\tilde{\mu}^{2}(u) \backslash \mu^{1}(u) P_{u}^{*} \mu^{2 \backslash 1}(u)$ for some $u \in L$. There must exist $s \in \tilde{\mu}^{2}(u) \backslash$ $\mu^{1}(u) \backslash \mu^{2}(u)$ and $\sigma \subseteq \mu^{2 \backslash 1}(u) \backslash \tilde{\mu}^{2}(u)$ such that $s P_{u} \sigma$; otherwise, $\sigma R_{u}^{*} s$ for each $s \in \tilde{\mu}^{2}(u) \backslash$ $\mu^{1}(u) \backslash \mu^{2}(u)$ implies $\mu^{2 \backslash 1}(u) R_{u}^{*} \tilde{\mu}^{2}(u) \backslash \mu^{1}(u)$ (via responsiveness). By definition, $s \in \tilde{\mu}^{2}(u) \backslash$ $\mu^{1}(u)$ implies $s \in L$, so $c u=\tilde{\mu}(s) \succsim s \mu(s)$ (since A1 is assumed, only $c u$ is possible here). Since preferences are strict and $s \notin \mu^{2 \backslash 1}(u), \tilde{\mu}(s) \neq \mu(s)$ and thus $\tilde{\mu}(s) \succ_{s} \mu(s)$. Hence, $\{s, u\}$ period-1 block μ with a type- 2 plan.

Case 1.2: Suppose $\tilde{\mu}(s) \succ_{s} \mu(s)$ for some $s \in L$ with $\tilde{\mu}^{2}(s)=u$. This implies $s \in$ $\tilde{\mu}^{2}(u) \backslash \mu^{1}(u)$ and $u \in L$, which in turn implies $\tilde{\mu}^{2}(u) \backslash \mu^{1}(u) R_{u}^{*} \mu^{2 \backslash 1}(u) . s \in \tilde{\mu}^{2}(u) \backslash \mu^{1}(u)$ implies $s \notin \mu^{1}(u)$. Then $\tilde{\mu}^{2}(s)=u$ with A1 implies $\tilde{\mu}(s)=c u$. Then $\tilde{\mu}(s) \succ_{s} \mu(s)$ implies $\mu(s) \neq c u$ and thus $s \notin \mu^{2 \backslash 1}(u)$. Therefore, $\tilde{\mu}^{2}(u) \backslash \mu^{1}(u) \neq \mu^{2 \backslash 1}(u)$. Hence, $\tilde{\mu}^{2}(u) \backslash \mu^{1}(u) P_{u}^{*} \mu^{2 \backslash 1}(u)$. This implies there exits $\sigma \in \mu^{2 \backslash 1}(u) \backslash \tilde{\mu}^{2}(u)$ such that $s P_{u} \sigma$. Hence, $\{s, u\}$ period- 1 block μ with a type-2 plan.

Case 2: Suppose μ is period- 1 dominated by some matching $\tilde{\mu}$ via some coalition L.

[^1]Case 2.1: Suppose $\tilde{\mu}^{2}(u) P_{u}^{*} \mu^{2}(u)$ for some $u \in L$. There must exist $s \in \tilde{\mu}^{2}(u) \backslash \mu^{2}(u)$ and $\sigma \subseteq \mu^{2}(u) \backslash \tilde{\mu}^{2}(u)$ such that $s P_{u} \sigma$; otherwise, $\sigma R_{u}^{*} s$ for each $s \in \tilde{\mu}^{2}(u) \backslash \mu^{2}(u)$ implies $\mu^{2}(u) R_{u}^{*} \tilde{\mu}^{2}(u)$ (via responsiveness). By definition, $s \in \tilde{\mu}^{2}(u)$ implies $s \in L$, so $\tilde{\mu}(s) \succsim s \mu(s)$; furthermore, $s \in \tilde{\mu}^{2}(u) \backslash \mu^{2}(u)$ implies $\tilde{\mu}(s) \neq \mu(s)$. Therefore, $\tilde{\mu}(s) \succ_{s} \mu(s)$. Hence, $\{s, u\}$ period-1 block μ with $\tilde{\mu}(s)$.

Case 2.2: Suppose $\tilde{\mu}(s) \succ_{s} \mu(s)$ for some $s \in L$ with $\tilde{\mu}^{2}(s)=u$. This implies $u \in L$, so $\tilde{\mu}^{2}(u) R_{u}^{*} \mu^{2}(u)$.

Case 2.2.1: If $\tilde{\mu}^{2}(u) \neq \mu^{2}(u)$, then $\tilde{\mu}^{2}(u) P_{u}^{*} \mu^{2}(u)$. This implies there is a student $s^{\prime} \in$ $\tilde{\mu}^{2}(u) \backslash \mu^{2}(u)$ (possibly different from s) and $\sigma \subseteq \mu^{2}(u) \backslash \tilde{\mu}^{2}(u)$ such that $s^{\prime} P_{u} \sigma . s^{\prime} \in \tilde{\mu}^{2}(u)$ implies $s^{\prime} \in L$ and thus $\tilde{\mu}\left(s^{\prime}\right) \succsim_{s^{\prime}} \mu\left(s^{\prime}\right) . s^{\prime} \notin \mu^{2}(u)$ implies $\tilde{\mu}\left(s^{\prime}\right) \neq \mu\left(s^{\prime}\right)$. So $\tilde{\mu}\left(s^{\prime}\right) \succ_{s^{\prime}} \mu\left(s^{\prime}\right)$. Then $\left\{s^{\prime}, u\right\}$ period-1 block μ with $\tilde{\mu}\left(s^{\prime}\right)$.

Case 2.2.2: If $\tilde{\mu}^{2}(u)=\mu^{2}(u)$, then s switches between a type-1 plan and a type-2 plan. Since preferences are strict, without loss of generality, suppose $u u \succ_{s} c u$ (the arguments are the same when $\left.c u \succ_{s} u u\right)$. Now $\tilde{\mu}(s)=u u$.

Case 2.2.2.1: There is an empty period- 1 position in u at μ. Then $\{s, u\}$ period- 1 block μ with a type-1 plan.

Case 2.2.2.2: There exists some student s^{\prime} such that $\mu\left(s^{\prime}\right)=u u$ and $\tilde{\mu}\left(s^{\prime}\right)=c u$. Because $s^{\prime} \in L, c u=\tilde{\mu}\left(s^{\prime}\right) \succsim_{s^{\prime}} \mu\left(s^{\prime}\right)=u u$. Since preferences are strict, $c u \succ_{s^{\prime}} u u$. Therefore, $\{s, u\}$ period-1 block μ with a type-1 plan if $s P_{u} s^{\prime}$, and $\left\{s^{\prime}, u\right\}$ period- 1 block μ with a type- 2 plan if $s^{\prime} P_{u} s$.

[^0]: ${ }^{*}$ Li Anmin Advanced Institute of Finance and Economics, Liaoning University, China. E-mail: kenho@lnu.edu.cn.
 ${ }^{1}$ A matching μ is Pareto dominated by $\tilde{\mu}$ if (i) $\forall s \in S, \tilde{\mu}(s) \succsim_{s} \mu(s)$ and $\forall u \in U, \tilde{\mu} \succsim_{u} \mu$, and (ii) $\exists s \in S, \tilde{\mu}(s) \succ_{s} \mu(s)$ or $\exists u \in U, \tilde{\mu} \succ_{u} \mu$. A matching μ is Pareto efficient if it is not Pareto dominated by any other matching, and we call the set of matchings that are not Pareto dominated by any other matching the Pareto set.

[^1]: ${ }^{2}$ We use u to denote the singleton $\{u\}$ if no confusion arises.

