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A The Degeneration of the LP Model

The baseline model coincides with the LP model when airlines have unit demands because

in such a case, airlines’ preferences are trivially lexicographic. Consider the following restric-

tions:

(i) no airline owns a canceled flight;

(ii) each airline owns exactly one non-canceled flight;

(iii) each airline owns at most one slot;
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(iv) no airline owns a slot;

(v) each airline owns exactly one slot;

(vi) each slot is owned by some airline.

In general, airlines’ preferences are more restricted than agents’ preferences in traditional

allocation problems because airlines want earlier feasible slots but not arbitrary slots for

their flights, while agents can have arbitrary preferences.

Under restrictions (i), (ii), and (iii), the LP model degenerates to a restricted variation

of the house allocation with existing tenants problem (Abdulkadiroğlu and Sönmez, 1999),

and the SMTC reduces to a variant of the top trading cycles mechanism. Under restrictions

(i), (ii), and (iv), the LP model reduces to a restricted variation of the house allocation

problem (Hylland and Zeckhauser, 1979), and the SMTC reduces to a variant of the serial

dictatorship. Under restrictions (i), (ii), (v), and (vi), the LP model reduces to a restricted

variation of the housing market (Shapley and Scarf, 1974), and the SMTC reduces to a

variant of the core mechanism.1

B Additional Algorithms

B.1 The Alternative MTC Trading Algorithm

We introduce the alternative MTC Trading algorithm in this section. Let 𝑧′ : {1, 2, ..., |𝐸 ′|} →
𝐸 ′ be an ordering. Note that 𝑧′ is not defined if 𝐸 ′ = ∅. We use (𝑎(·), 𝑠, 𝑏(·), 𝑠′, ...) to mean

𝑎(·) picks 𝑠, 𝑏(·) picks 𝑠′, etc.
1In a housing market (under strict preferences), there is a unique matching in the core (Roth and Postle-

waite, 1977), and the Gale’s top trading cycles algorithm (attributed to David Gale by Shapley and Scarf
(1974)) can be used to find the outcome of the core mechanism. Restrictions (i), (ii), (v), and (vi) imply that
the number of flights equals the number of slots. Since there is no vacant slot, an ordering is not needed.
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Alternative MTC Trading Algorithm: According to 𝑅𝑎, let 𝑎(𝑖) and 𝑎(|𝐹 𝑐
𝑎 | + 𝑖) rep-

resent the 𝑖-th most important flight in 𝐹 𝑐
𝑎 and 𝐹 𝑢𝑐

𝑎 , respectively. Let 𝑆1 = 𝑆 and 𝑧1 = 𝑧.

At Step 𝑛 ≥ 1:

Let 𝑎(·) be the first flight and 𝑢(·) be the first un-inserted flight in 𝑧𝑛. For 𝑣 ∈ 𝐴, let 𝑣(·)
be the first flight of 𝑣 in 𝑧𝑛 and ̂︀𝑣 indicate 𝑣 ̸= 𝑎. Let each flight in 𝐹 𝑐 pick the earliest

feasible slot in 𝑆𝑛 ∩ 𝑆𝑐, and each flight in 𝐹 𝑢𝑐 pick the slot that it is removed with in the

M-IA.

If 𝑎(·) picks a slot in 𝑆 ∩ 𝑆̂︀𝑣, modify 𝑧𝑛 by inserting ̂︀𝑣(·) in front of 𝑎(·).
If 𝑎(·) picks a slot 𝑠𝑣 ∈ 𝑆𝑛 ∩ 𝑆𝑣, then there is a cycle (𝑎(·), 𝑠𝑣, 𝑣(·), ..., 𝑠𝑏, 𝑏(·), 𝑠𝑎).
If 𝑎(·) picks a slot 𝑠 ∈ 𝑆𝑛 ∩ (𝑆−𝐴 ∪ 𝑆HH𝐴𝑛), then there is a chain (𝑎(·), 𝑠, 𝑢(·), ..., 𝑠𝑏, 𝑏(·), 𝑠𝑎).
Remove all flights in the cycle or chain by assigning them the slots they pick. If there is

no more flight, stop. Otherwise, denote the resultant set of slots and ordering by 𝑆𝑛+1 and

𝑧𝑛+1, respectively; go to the next step.

The smallest cycle is (𝑎(·), 𝑠𝑎), where 𝑎(·) = 𝑣(·) and 𝑠𝑣 = 𝑠𝑎. The shortest chain is

(𝑎(·), 𝑠), where 𝑎(·) = 𝑢(·).
Theorem B.1: For any 𝑧, the MTC Trading algorithm and the alternative MTC Trading

algorithm produce the same outcome.

Proof of Theorem B.1: Observe that for 𝑎 ∈ 𝐴 and 𝑖 ≤ |𝐹𝑎|, 𝑎(𝑖) represents the same flight

in both algorithms. For any set of slot 𝑆 ′ ⊆ 𝑆 and any set of flights 𝐹 ′ ⊆ 𝐹 , the alternative

MTC Trading algorithm assigns slots either through a cycle (𝑎(·), 𝑠𝑣, 𝑣(·), ..., 𝑠𝑏, 𝑏(·), 𝑠𝑎) or
a chain (𝑎(·), 𝑠, 𝑢(·), ..., 𝑠𝑏, 𝑏(·), 𝑠𝑎). Let 𝑧′ be the current ordering in the Alternative MTC

Trading Algorithm.

For any 𝑤 ∈ 𝐴, let 𝑤(·) be the first flight of 𝑤 in 𝑧′. Observe that 𝑤(·) is the flight in

𝐹 ′ ∩ 𝐹𝑤 that has the highest priority in 𝑧. Therefore, (𝑎(·), 𝑠𝑣, 𝑣(·), ..., 𝑠𝑏, 𝑏(·), 𝑠𝑎) is a cycle

in the MTC Trading algorithm for (𝑆 ′, 𝐹 ′).

𝑢(·) is the first un-inserted flight in 𝑧′. By selection, 𝑢(·) is the first flight in some 𝑧′′

with no inserted flights. Let 𝐸 ′′ be the codomain of 𝑧′′ and 𝐹 ′′ be the set of flights that

are represented by the surrogates in 𝐸 ′′. Observe that 𝑢(·) is the flight in 𝐹 ′′ that has the

highest priority in 𝑧. Since 𝐹 ′ ⊆ 𝐹 ′′, 𝑢(·) is the flight in 𝐹 ′ that has the highest priority in

𝑧. Hence, (𝑎(·), 𝑠, 𝑢(·), ..., 𝑠𝑏, 𝑏(·), 𝑠𝑎) is a cycle in the MTC algorithm for (𝑆 ′, 𝐹 ′).

For any (𝑆 ′, 𝐹 ′), the alternative MTC Trading algorithm finds and removes a cycle in

the MTC Trading algorithm. In the MTC algorithm, if a cycle is not removed at some step,

then it would still be a cycle at the next step. These two facts imply that for any 𝑧, the

MTC algorithm and the alternative MTC Trading algorithm produce the same outcome. ■

Example 9 (continues): Now we run the Alternative MTC trading algorithm. As before,

𝑎(1), 𝑎(2), 𝑎(3), and 𝑎(4) represent 𝑓𝑎,3, 𝑓𝑎,1, 𝑓𝑎,2, and 𝑓𝑎,4, respectively. 𝑏(1) represents 𝑓𝑏,1
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and 𝑐(1) represents 𝑓𝑐,1. 𝑆1 = 𝑆1 and 𝑧1 = 𝑧. In step 1, 𝑎(1) picks 𝑠4 ∈ 𝑆1 ∩ 𝑆𝑐, so

𝑐(1) is inserted in front of 𝑎(1). 𝑧2 = 𝑐(1), 𝑎(1), 𝑎(2), 𝑏(1), 𝑎(3), 𝑎(4). In step 2, 𝑐(1) picks

𝑠5 ∈ 𝑆2 ∩𝑆𝑎 and (𝑎(1), 𝑠4, 𝑐(1), 𝑠5) is a cycle. 𝑧3 = 𝑎(2), 𝑏(1), 𝑎(3), 𝑎(4). In step 3, 𝑎(2) picks

𝑠1 ∈ 𝑆3 ∩ (𝑆−𝐴 ∪ 𝑆ZZ𝐴3) and (𝑎(2), 𝑠2) is a chain. 𝑧4 = 𝑏(1), 𝑎(3), 𝑎(4). In step 4, 𝑏(1) pick

𝑠6 ∈ 𝑆4 ∩ 𝑆𝑎, so 𝑎(3) is inserted in front of 𝑏(1). 𝑧5 = 𝑎(3), 𝑏(1), 𝑎(4). In step 5, 𝑎(3) picks

𝑠1 ∈ 𝑆5 ∩ (𝑆−𝐴 ∪ 𝑆ZZ𝐴5) and 𝑏(1) is the first un-inserted flight in 𝑧5, so (𝑎(3), 𝑠1, 𝑏(1), 𝑠6) is a

chain. 𝑧6 = 𝑎(4). In step 6, 𝑎(4) picks 𝑠3 ∈ 𝑆6 ∩ (𝑆−𝐴 ∪ 𝑆ZZ𝐴6) and (𝑎(4), 𝑠3) is a cycle. The

Alternative MTC trading algorithm stops as there is no more flight.

B.2 A Class of Identification Algorithms

Consider an algorithm that replaces 𝑓† in the M-IA by 𝑓‡, which is a flight in 𝐹𝑡∩𝐹[𝑒𝑓 ,𝑠∘]∩𝐹𝑎

that is arbitrarily selected or selected by some rules. Let Π𝑚
𝑡 be a landing schedule in such

an identification algorithm. 𝑆𝑚
𝑡 and 𝐹𝑚

𝑡 are defined accordingly.

Theorem B.2: For 𝑡 ≥ 1, 𝑠 satisfies (E) at Π𝑡 if and only if 𝑠 satisfies (E) at Π𝑚
𝑡 , and it

satisfies (L) at Π𝑡 if and only if it satisfies (L) at Π𝑚
𝑡 .

This result parallels Theorem 3. The proofs of Lemma 5, Lemma 6, and Theorem 3 do

not rely on how the flight in 𝐹𝑡 ∩𝐹[𝑒𝑓 ,𝑠∘] ∩𝐹𝑎 is chosen, which means parallel proofs of them

can show Π𝑚 also has the same properties. So the proof of Theorem B.2 is omitted. The

counterparts of Corollary 5 to 11 are also straightforward.

C Additional Details

C.1 The Performance of Compression in the Lexicographic Prefer-

ence Domain

𝐹 𝑓𝑎,1 𝑓𝑎,2 𝑓𝑏,1

𝑒 2 1 1

𝑅 1 2 1

𝑒′ 2 3 1

𝑆 𝑠1 𝑠2 𝑠3

Π 𝑓𝑎,2 𝑓𝑏,1 𝑓𝑎,1

Π′ 𝑓𝑏,1 𝑓𝑎,1 𝑓𝑎,2

Suppose Π is the default landing schedule. If 𝑒 is reported, Compression outputs Π, which

is not Pareto efficient and not in the core as both 𝑎 and 𝑏 prefer Π′ to Π. If 𝑎 reports 𝑒′𝑓𝑎,1 = 2

and 𝑒′𝑓𝑎,2 = 3, 𝑠1 becomes vacant. Compression then outputs Π′, so it is not strategy-proof.
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C.2 Manipulable by Postponing a Flight Cancellation

A schedule mechanism 𝜙 is manipulable by postponing a flight cancellation if there

is an instance 𝐼, 𝑎 ∈ 𝐴, and 𝑠 ∈ 𝑆𝑎 such that Π
Φ

𝜙(𝐼
→𝑆∖{𝑠},Φ𝑎−𝑠

†
)

(𝑎)∪{𝑠},⋆
𝑎 ≻𝑎 𝜙⋆

𝑎(𝐼).
2 Example 8

also shows 𝜙𝑍 is manipulable by postponing a flight cancellation.

D A Class of Lottery Mechanisms

The main goal of this section is to propose a carefully designed lottery mechanism, 𝜑𝑀 .

Examples are relegated to Section D.1. A supplementary algorithm is provide for the mech-

anism in Section D.2.

We begin with introducing some new concepts. For each 𝑎 ∈ 𝐴, let 𝑜𝑎 be the number of

originally scheduled flights of 𝑎 and 𝑘𝑎 be the number of frozen flights of 𝑎. Flights might

be canceled in the GDP or before the GDP starts. For each 𝑎 ∈ 𝐴, let 𝑚𝑎 be the number

of canceled flights of 𝑎. The set of flights owned by 𝑎, 𝐹𝑎, to be more specific, is the set of

non-canceled and non-frozen flights of 𝑎. We assume 𝑜𝑎 = 𝑘𝑎+𝑚𝑎+ |𝐹𝑎|. Let 𝑛𝑎 = 𝑚𝑎+ |𝐹𝑎|
and 𝑛 = (𝑛𝑎)𝑎∈𝐴. Now we extend an instance in the LP model by including 𝑛, that is,

𝐼 = (𝐴,𝐹†, 𝑆,Φ†, 𝑒, 𝑅, 𝑛).

Letℳ be the set of landing schedules. A schedule lottery ℒ is a probability distribution

over ℳ. Let 𝛥ℳ denote the set of schedule lotteries. We denote a schedule lottery by

ℒ =
∑︀

𝑝Π·Π where 𝑝Π ∈ [0, 1] is the probability weight of landing schedule Π and
∑︀

Π 𝑝Π = 1.

To extend an airline’s preference to schedule lotteries, we assume an airline only cares about

the expected delays of its flights. Given a schedule lottery ℒ ∈ 𝛥ℳ, the expected delay

for 𝑓 is 𝑑𝑓 (ℒ) =
∑︀

Π 𝑝Π ·𝑑𝑓 (Π). For any schedule lotteries ℒ and ℒ′, ℒ ≻𝑎 ℒ′ if and only if the

first non-zero coordinate of 𝑑𝑎 = (𝑑1, 𝑑2, ..., 𝑑|𝐹𝑎|) is positive, where 𝑑𝑖 = 𝑑𝑅𝑎(𝑖)(ℒ′)−𝑑𝑅𝑎(𝑖)(ℒ)
for 𝑖 ∈ {1, ..., |𝐹𝑎|}; other cases are similar as before. A schedule lottery for 𝑎, ℒ𝑎,

is a probability distribution over the set of landing schedules for 𝑎. A schedule lottery

is a probability distribution over landing schedules, and each landing schedule Π induces a

landing schedule for 𝑎, Π𝑎, for each 𝑎 ∈ 𝐴; therefore, a schedule lottery, ℒ, induces a schedule
lottery for 𝑎, ℒ𝑎, for each 𝑎 ∈ 𝐴. We also use ≿𝑎 to compare landing schedules for 𝑎. An

airline only cares about its own flights, so for each 𝑎 ∈ 𝐴, ℒ ≿𝑎 ℒ′ ⇐⇒ ℒ𝑎 ≿𝑎 ℒ′
𝑎.

2Our definition is slightly different from the one in SA because self-optimization is not assumed in their

definition. Indeed, in our language, their definition would be satisfied if there exist a Π
Φ

𝜙(𝐼→𝑆∖{𝑠})
(𝑎)∪{𝑠}

𝑎 that

is better than the 𝜙𝑎(𝐼). However, it is easy to see that if Π
Φ

𝜙(𝐼→𝑆∖{𝑠})
(𝑎)∪{𝑠},⋆

𝑎 is better than 𝜙𝑎(𝐼), then the

requirement is satisfied, and if Π
Φ

𝜙(𝐼→𝑆∖{𝑠})
(𝑎)∪{𝑠},⋆

𝑎 is not better than 𝜙𝑎(𝐼), then no other Π
Φ

𝜙(𝐼→𝑆∖{𝑠})
(𝑎)∪{𝑠}

𝑎

is better than 𝜙𝑎(𝐼).
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A (direct) lottery mechanism selects a schedule lottery 𝜑(𝐼) for each instance 𝐼.3 Let

𝜑𝑎(𝐼) be the schedule lottery for 𝑎 induced by 𝜑(𝐼). Given a schedule lottery 𝜑(𝐼), let 𝜑𝑖(𝐼)

be a realization of 𝜑(𝐼). Let 𝜑𝑖
𝑓 (𝐼) be the slot that is assigned to 𝑓 at 𝜑𝑖(𝐼). A lottery

mechanism is ex post core-selecting if for any instance, it only gives positive probabilities to

landing schedules that are in the core. A lottery mechanism is ex post feasible, ex post non-

wasteful, ex post individually rational, and ex post Pareto efficient if for any instance, it only

gives positive probabilities to landing schedules that are feasible, non-wasteful, individually

rational, and Pareto efficient, respectively.

A lottery mechanism is strategy-proof if truth-telling is a dominant strategy in its induced

preference revelation game. Given a landing schedule 𝜑𝑖(𝐼), let Φ𝜑𝑖(𝐼) be the induced slot

ownership function. Let 𝜑⋆
𝑎(𝐼) =

∑︀
𝑝𝜑𝑖(𝐼) · Π

Φ𝜑𝑖(𝐼)(𝑎),⋆
𝑎 . For 𝑓 ∈ 𝐹𝑎, Π

Φ𝜑𝑖(𝐼)(𝑎),⋆
𝑎 (𝑓) is the slot

that is assigned to 𝑓 at Π
Φ𝜑𝑖(𝐼)(𝑎),⋆
𝑎 . Given 𝜑(𝐼), 𝜑⋆

𝑎(𝐼) is the schedule lottery for 𝑎 that 𝑎 uses

its slots optimally at every realization of 𝜑(𝐼). We call 𝜑⋆
𝑎(𝐼) the derived schedule lottery

of 𝜑𝑎(𝐼). When airline 𝑎 compares 𝜑𝑎(𝐼) and 𝜑𝑎(𝐼
′), it does no compare them directly

but compare their derived schedule lotteries, 𝜑⋆
𝑎(𝐼) and 𝜑⋆

𝑎(𝐼
′). In other words, even if

𝜑𝑎(𝐼
′) ≻𝑎 𝜑𝑎(𝐼), as long as 𝜑⋆

𝑎(𝐼) ≻𝑎 𝜑⋆
𝑎(𝐼

′), 𝑎 would choose 𝜑𝑎(𝐼) over 𝜑𝑎(𝐼
′). A lottery

mechanism 𝜑 is strategy-proof if for any 𝐼, any 𝑎 ∈ 𝐴, 𝜑⋆
𝑎(𝐼) ≿𝑎 𝜑

⋆
𝑎(𝐼→𝑒𝑎,𝑅𝑎).

For any instance 𝐼, let 𝐼→𝑆′,Φ′
†,𝑛

′ denote the instance that is the same as 𝐼 except with 𝑆,Φ†

and 𝑛 replaced by 𝑆 ′,Φ′
† and 𝑛′, respectively. Let 𝑛𝑎−1 be the resultant profile after 𝑛𝑎 in 𝑛

is replaced by 𝑛𝑎−1. A lottery mechanism 𝜑 is manipulable via slot destruction if there is an

instance 𝐼, 𝑎 ∈ 𝐴, and 𝑠 ∈ 𝑆𝑎 such that 𝜑⋆
𝑎(𝐼→𝑆∖{𝑠},Φ𝑎−𝑠

† ,𝑛𝑎−1) ≻𝑎 𝜑
⋆
𝑎(𝐼). A lottery mechanism

𝜑 is manipulable by postponing a flight cancellation if there is an instance 𝐼, 𝑎 ∈ 𝐴, and

𝑠 ∈ 𝑆𝑎 such that ℒ ≻𝑎 𝜑
⋆
𝑎(𝐼), where ℒ =

∑︀
𝑝𝜑𝑖(𝐼→𝑆∖{𝑠},Φ𝑎−𝑠

† ,𝑛𝑎−1 )
·ΠΦ

𝜑𝑖(𝐼
→𝑆∖{𝑠},Φ𝑎−𝑠

† ,𝑛𝑎−1 )

(𝑎)∪{𝑠},⋆
𝑎 .

We define a class of lottery mechanisms: amultiple trading cycles mechanism with random

ordering process (MTCR) is a lottery mechanism that selects a schedule lottery for each 𝐼

using a random ordering process and the MTC algorithm:

Random Ordering Process: Randomly select an ordering 𝑧𝐸𝐴 from a given distribution

over 𝑍𝐸 ∩ 𝑍𝐴 and call it 𝑧.

MTC Algorithm: As in the main text.

Corollary C.1: AnyMTCR is ex post feasible, ex post non-wasteful, ex post individually

rational, ex post Pareto efficient, and ex post core-selecting.

This corollary is immediate from Proposition 3 and Theorem 4. We consider an MTCR

is more suitable than an MTC in many situations.4 We define the multiple trading cycles

3Given any 𝐼, a schedule mechanism 𝜙 can be viewed as a lottery mechanism that selects a schedule
lottery that assigns probability 1 to 𝜙(𝐼).

4Consider a simple example: |𝐹𝑎| = |𝐹𝑏| = 1. 𝑧1 = 𝑎(1), 𝑏(1) and 𝑧2 = 𝑏(1), 𝑎(1). Suppose 𝑆 = 𝑆−𝐴
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mechanism with random ordering algorithm, 𝜑𝑀 , to be a lottery mechanism that selects a

schedule lottery for each 𝐼 using the random ordering algorithm and the MTC algorithm.

Random Ordering Algorithm: Create 𝑛𝑎 copies of 𝑎 for each 𝑎 ∈ 𝐴. Draw a copy at

a time without replacement. Denote the first copy of 𝑎 by 𝑎(1), the second copy of 𝑎 by

𝑎(2), and so on. Denote the resultant ordering by 𝑧⋆. For each 𝑎, eliminate each 𝑎(𝑖) with

𝑖 > |𝐹𝑎| from 𝑧⋆ and denote the resultant ordering by 𝑧.

MTC Algorithm: As in the main text.

It is clear that when 𝑛𝑎 = |𝐹𝑎| for each 𝑎 ∈ 𝐴, 𝑧⋆ = 𝑧. Consider an example where

𝑛𝑎 = 2 > |𝐹𝑎| = 1 and 𝑛𝑏 = |𝐹𝑏| = 1. Let 𝑧1 = 𝑎(1), 𝑎(2), 𝑏(1), 𝑧2 = 𝑎(1), 𝑏(1), 𝑎(2), and

𝑧3 = 𝑏(1), 𝑎(1), 𝑎(2). Each of them realizes with probability 1
3
.5 Suppose 𝑧⋆ = 𝑎(1), 𝑎(2), 𝑏(1).

Then 𝑧 = 𝑎(1), 𝑏(1) and 𝑧 ∈ 𝑍𝐸 ∩ 𝑍𝐴.

Since |𝐸| is finite, |𝑍𝐸| is finite. So |𝑍𝐸 ∩ 𝑍𝐴| is also finite. Observe that the random

ordering algorithm selects an ordering in 𝑍𝐸 ∩ 𝑍𝐴, so
∑︀

𝑝𝑧𝐸𝐴 · 𝑧𝐸𝐴 = 1, where 𝑝𝑧𝐸𝐴 is the

probability that 𝑧𝐸𝐴 is realized; in addition, for each 𝑧𝐸𝐴 ∈ 𝑍𝐸 ∩𝑍𝐴, 𝑝𝑧𝐸𝐴 > 0.6 This means

the random ordering algorithm indeed selects an ordering 𝑧𝐸𝐴 from a given distribution over

𝑍𝐸 ∩ 𝑍𝐴, and so it is a random ordering process. 𝜑𝑀 is an MTCR, so it has the properties

stated in Corollary C.1.

We define the multiple trading cycles mechanism with simple random ordering algorithm,

𝜑𝑆, to be a lottery mechanism that selects a schedule lottery for each 𝐼 using the random

ordering algorithm and the MTC algorithm:

Simple Random Ordering Algorithm: Create |𝐹𝑎| copies of 𝑎 for each 𝑎 ∈ 𝐴. Draw a

copy at a time without replacement. Denote the first copy of 𝑎 by 𝑎(1), the second copy of

𝑎 by 𝑎(2), and so on. Denote the resultant ordering by 𝑧.

MTC Algorithm: As in the main text.

Observe that if 𝜑𝑆 is employed and 𝑚𝑎 > 0, then 𝑎 might have incentives to hide its

cancellations in order to raise the probabilities of getting earlier positions in the resultant

ordering, which might in turn reduce its expected delays. 𝜑𝑀 eliminates this type of incen-

tives by creating 𝑛𝑎 copies of 𝑎 for each 𝑎 ∈ 𝐴 (Example D.1). In some cases, by creating 𝑁𝑎

copies of 𝑎 for each 𝑎 ∈ 𝐴, 𝜑𝑀 also provides incentives for airlines to report their cancellations

timely (Example D.2).

and 𝑒𝑓𝑎 = 𝑒𝑓𝑏 . If 𝑎 and 𝑏 are the same in every aspect, then there is no good reason to choose 𝑧1 over 𝑧2

deterministically and vice versa.
5For 𝑧1 and 𝑧2, 𝑎(1) is drawn with probability 2

3 ; next, 𝑎(2) or 𝑏(1) is drawn with probability 1
2 ; lastly,

the last surrogate is drawn with probability 1. For 𝑧3, 𝑏(1) is drawn with probability 1
3 ; next, 𝑎(1) is drawn

with probability 1; lastly, 𝑎(2) is drawn with probability 1.
6For each 𝑧𝐸𝐴, there is at least one ordering 𝑧⋆ such that 𝑧𝐸𝐴(𝑗) = 𝑧⋆(𝑗) for 𝑗 ≤ |𝐸|. After the elimination

of 𝑎(𝑖) with 𝑖 > |𝐹𝑎| for each 𝑎 from such an 𝑧⋆, the resultant ordering is 𝑧𝐸𝐴. For example, if 𝑛𝑎 = 2,
𝑛𝑏 = 𝑛𝑐 = 1, and 𝑧𝐸𝐴 is 𝑎(1), 𝑏(1), then the 𝑧⋆ with 𝑧𝐸𝐴(𝑗) = 𝑧⋆(𝑗) for 𝑗 ≤ |𝐸| could be 𝑎(1), 𝑏(1), 𝑎(2), 𝑐(1)
or 𝑎(1), 𝑏(1), 𝑐(1), 𝑎(2).
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Consider a mechanism, such as 𝜑𝑀 , that assigns |𝐹𝑎| slots to each 𝑎 ∈ 𝐴. When 𝑚𝑎 > 0,

𝑎 might have incentives to hide its cancellations in order to obtain more slots, which might

be useful in the subsequent instances (Example D.3). This type of incentives might be

eliminated by allocating an additional 𝑚𝑎 slots to each 𝑎 ∈ 𝐴. Indeed, assigning 𝑛𝑎 slots

to each 𝑎 ∈ 𝐴 is also consistent with the current procedure.7 There are many ways to

do so if preferences are defined solely on landing schedules. In Section D.2, we suggest a

supplementary algorithm for 𝜑𝑀 to assign an additional 𝑚𝑎 slots to each 𝑎 ∈ 𝐴.

Similary to 𝜙𝑍 , 𝜑𝑀 is manipulable via slot destruction (Example D.4) and not strategy-

proof (Example D.5). Note that the concept of manipulable via slot destruction relates to

freezing a canceled flight. A natural question then arises: Whether an airline can be better

off by freezing a non-canceled flight 𝑓 ∈ 𝐹𝑎 in a slot 𝑠 ∈ 𝑆𝑎 if 𝜑
𝑀 is employed?8 The answer

is maybe: Example D.6 shows this could be the case, while Example D.7 shows otherwise.

D.1 Examples

Example D.1:

𝐹 𝑓𝑎,1 𝑓𝑎,2 𝑓𝑏,1

𝑒 1 1 1

𝑅 1 2 1

Suppose 𝑎 has a canceled flight 𝑓𝑎,3. 𝑆 = {𝑠1, 𝑠2, 𝑠3, 𝑠4, ...}. Suppose 𝜑𝑆 is employed and

𝑎 reports the cancellation of 𝑓𝑎,3 timely. Let 𝑧1 = 𝑎(1), 𝑎(2), 𝑏(1), 𝑧2 = 𝑎(1), 𝑏(1), 𝑎(2), and

𝑧3 = 𝑏(1), 𝑎(1), 𝑎(2). Each of them realizes with probability 1
3
. Observe that 𝑓𝑎,1 gets 𝑠1 given

𝑧1 or 𝑧2 and gets 𝑠2 given 𝑧3, so the expected delay of 𝑓𝑎,1 is 1
3
× 1 (unit of time) = 1

3
; 𝑓𝑎,2

gets 𝑠2 given 𝑧1 and gets 𝑠3 given 𝑧2 or 𝑧3, so the expected delay of 𝑓𝑎,2 is
1
3
× 1+ 2

3
× 2 = 5

3
.

Now suppose 𝑎 does not report the cancellation of 𝑓𝑎,3. Let 𝑧4 = 𝑎(1), 𝑎(2), 𝑎(3), 𝑏(1),

𝑧5 = 𝑎(1), 𝑎(2), 𝑏(1), 𝑎(3), 𝑧6 = 𝑎(1), 𝑏(1), 𝑎(2), 𝑎(3), and 𝑧7 = 𝑏(1), 𝑎(1), 𝑎(2), 𝑎(3). Each of

them realizes with probability 1
4
. Observe that 𝑓𝑎,1 gets 𝑠1 given 𝑧4, 𝑧5 or 𝑧6 and gets 𝑠2

given 𝑧7, so the expected delay of 𝑓𝑎,1 reduces to 1
4
; 𝑓𝑎,2 gets 𝑠2 given 𝑧4or 𝑧5 and gets 𝑠3

given 𝑧6 or 𝑧7, so the expected delay of 𝑓𝑎,2 reduces to
1
2
.

To sum up, when 𝜑𝑆 is employed, 𝑎 has incentives to hide its cancellation in order to

raise the probabilities of getting earlier positions in the resultant ordering, which in turn

reduces its expected delays.

7Recall that 𝑜𝑎 = 𝑘𝑎 +𝑚𝑎 + |𝐹𝑎|. RBS assigns 𝑜𝑎 slots to 𝑎 ∈ 𝐴. Airlines can exchange their slots via
Compression or choose to freeze their flights in their slots, so each 𝑎 ∈ 𝐴 possesses 𝑜𝑎 slots at the end of
a reassignment. Airline 𝑎 freezes 𝑘𝑎 of its flights implies 𝑎 keeps 𝑘𝑎 slots from reassignment. Therefore, 𝑎
would possess 𝑜𝑎 slot if it is assigned 𝑚𝑎 + |𝐹𝑎| slots.

8Note that answering this question for 𝜙𝑍 is impossible unless we know 𝑍.
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Example D.2:

𝐹 𝑓𝑎,1 𝑓𝑏,1 𝑓𝑐,1

𝑒 3 3 1

𝑅 1 1 1

Suppose 𝑓𝑎,2 is a canceled flight of 𝑎 and has been frozen in 𝑠1.
9 𝑆 = {𝑠2, 𝑠3, 𝑠4, ...}.

Suppose 𝜑𝑆 or 𝜑𝑀 is employed and 𝑎 does not report the cancellation of 𝑓𝑎,2. Let 𝑧1 =

𝑎(1), 𝑏(1), 𝑐(1), 𝑧2 = 𝑎(1), 𝑐(1), 𝑏(1), 𝑧3 = 𝑐(1), 𝑎(1), 𝑏(1), 𝑧4 = 𝑐(1), 𝑏(1), 𝑎(1), 𝑧5 = 𝑏(1), 𝑎(1), 𝑐(1),

and 𝑧6 = 𝑏(1), 𝑐(1), 𝑎(1). Each of them realizes with probability 1
6
. Observe that, in both

cases, 𝑓𝑎,1 gets 𝑠3 given 𝑧1, 𝑧2 or 𝑧3 and gets 𝑠4 otherwise, so the expected delay of 𝑓𝑎,1 is
1
2
.

Now suppose 𝑎 reports the cancellation of 𝑓𝑎,2 timely and thus releases 𝑠1. Observe that

the release of 𝑠1 benefits 𝑐. If 𝜑
𝑆 is employed, the expected delay of 𝑓𝑎,1 does not change. If

𝜑𝑀 is employed, an extra surrogate of 𝑎 would be created. Let 𝑧1 = 𝑎(1), 𝑎(2), 𝑏(1), 𝑐(1), 𝑧2 =

𝑎(1), 𝑏(1), 𝑎(2), 𝑐(1), 𝑧3 = 𝑎(1), 𝑏(1), 𝑐(1), 𝑎(2), 𝑧4 = 𝑎(1), 𝑎(2), 𝑐(1), 𝑏(1), 𝑧5 = 𝑎(1), 𝑐(1), 𝑎(2), 𝑏(1),

𝑧6 = 𝑎(1), 𝑐(1), 𝑏(1), 𝑎(2), 𝑧7 = 𝑐(1), 𝑎(1), 𝑎(2), 𝑏(1), 𝑧8 = 𝑐(1), 𝑎(1), 𝑏(1), 𝑎(2), 𝑧9 = 𝑐(1), 𝑏(1), 𝑎(1), 𝑎(2),

𝑧10 = 𝑏(1), 𝑎(1), 𝑎(2), 𝑐(1), 𝑧11 = 𝑏(1), 𝑎(1), 𝑐(1), 𝑎(2), 𝑧12 = 𝑏(1), 𝑐(1), 𝑎(1), 𝑎(2). Each of

them realizes with probability 1
12
. Observe that 𝑓𝑎,1 gets 𝑠4 given 𝑧9, 𝑧10,𝑧11 or 𝑧12 and gets

𝑠3 otherwise, so the expected delay of 𝑓𝑎,1 is
1
3
.

To sum up, when 𝑎 cancels a flight that was frozen in a slot 𝑠 and 𝑠 cannot be used

by another flight of 𝑎, 𝜑𝑆 provides no incentive for 𝑎 to report this cancellation, while 𝜑𝑀

provides incentives for 𝑎 to report this cancellation timely.

Example D.3:

𝐹 𝑓𝑎,1 𝑓𝑏,1

𝑒 2 2

𝑅 1 1

Suppose 𝑠1 ∈ 𝑆 and 𝑎 has a canceled flight 𝑓𝑎,2. Suppose 𝑎 reports 𝑒′𝑎 = (𝑒′𝑓𝑎,1 = 2, 𝑒′𝑓𝑎,2 =

1) and 𝑅′
𝑎 = (𝑅′

𝑎(1) = 𝑓𝑎,1, 𝑅
′
𝑎(2) = 𝑓𝑎,2); 𝑏 reports truthfully. 𝜑𝑀 would assign 𝑠1 to 𝑎.

Suppose in the next instance, 𝑒𝑓𝑎,1 = 𝑒𝑓𝑏,1 = 1. Now 𝑓𝑎,1 gets 𝑠1 with certainty. By contrast,

if 𝑎 did not hide the cancellation of 𝑓𝑎,2, then 𝑓𝑎,1 only gets 𝑠1 with probability 1
2
.

Example D.4 (Example 8 Revisit):

9𝑠1 is not in 𝑆𝑎 because the slot ownership function is defined on 𝑆.
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𝐹 𝑓𝑎,1 𝑓𝑏,1 𝑓𝑏,2 𝑓𝑐,1

𝑒 1 3 1 4

𝑅 1 1 2 1

𝑆 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

Π1 𝑓𝑎,1 𝑓𝑏,2 𝑓𝑏,1 𝑓𝑐,1

Π2 𝑓𝑏,2 𝑓𝑎,1 𝑓𝑏,1 𝑓𝑐,1

Π3 𝑓𝑎,1 𝑓𝑏,2 - 𝑓𝑐,1 𝑓𝑏,1

Π4 𝑓𝑎,1 𝑓𝑏,2 - 𝑓𝑏,1 𝑓𝑐,1

Π5 𝑓𝑏,2 𝑓𝑎,1 - 𝑓𝑏,1 𝑓𝑐,1

Π6 𝑓𝑏,2 𝑓𝑎,1 - 𝑓𝑐,1 𝑓𝑏,1

Suppose 𝜑𝑀 is employed. Suppose 𝑆𝑎 = {𝑠3} and 𝑎 has a canceled flight 𝑓𝑎,2. Let 𝐼

be the instance where 𝑎 reports 𝑒𝑎 and 𝑅𝑎. Let 𝐼→𝑆∖{𝑠3},Φ
𝑎−𝑠3
† ,𝑛𝑎−1 be the instance where 𝑎

freezes 𝑓𝑎,2 in 𝑠3. Note that 𝑆
𝑢𝑐 = {𝑠3, 𝑠4} at 𝐼 but 𝑆𝑢𝑐 = ∅ at 𝐼→𝑆∖{𝑠3},Φ

𝑎−𝑠3
† ,𝑛𝑎−1 .

In 𝜑𝑀(𝐼), 𝑏(1) represents 𝑓𝑏,2 and 𝑏(2) represents 𝑓𝑏,1. Whenever 𝑏(1) is drawn before

𝑎(1), 𝑓𝑎,1 obtains 𝑠2 as in Π2. This happens with orderings 𝑏(1), ... and 𝑐(1), 𝑏(1), .... The

probability of getting these orderings is 2
5
+ 1

5
× 2

4
= 1

2
. In other words, the expected delay

of 𝑓𝑎,1 is
1
2
.

In 𝜑𝑀(𝐼→𝑆∖{𝑠3},Φ
𝑎−𝑠3
† ,𝑁𝑎−1), 𝑏(1) represents 𝑓𝑏,1 and 𝑏(2) represents 𝑓𝑏,2. Only when 𝑏(1)

and 𝑏(2) are drawn before 𝑎(1), 𝑓𝑎,1 obtains 𝑠2 as in Π5 and Π6. This happens with orderings

𝑏(1), 𝑏(2)..., 𝑏(1), 𝑐(1), 𝑏(2), 𝑎(1), and 𝑐(1), 𝑏(1), 𝑏(2), 𝑎(1). The probability of getting these

orderings is 2
4
× 1

3
+ 2

4
× 1

3
× 1

2
+ 1

4
× 2

3
× 1

2
= 1

3
. In other words, the expected delay of 𝑓𝑎,1 is

1
3
. Therefore, 𝜑𝑀 is manipulable via slot destruction and thus manipulable by postponing a

flight cancellation.

Example D.5 (Example 7 Revisit):

𝐹 𝑓𝑎,1 𝑓𝑎,2 𝑓𝑏,1 𝑓𝑏,2

𝑒 1 3 4 1

𝑅 1 2 1 2

𝑒𝑎 1 4 4 1

𝑆 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

Π1 𝑓𝑎,1 𝑓𝑏,2 𝑓𝑎,2 𝑓𝑏,1

Π2 𝑓𝑏,2 𝑓𝑎,1 𝑓𝑎,2 𝑓𝑏,1

Π3 𝑓𝑎,1 𝑓𝑏,2 𝑓𝑎,2 𝑓𝑏,1

Π4 𝑓𝑎,1 𝑓𝑏,2 𝑓𝑏,1 𝑓𝑎,2

Π5 𝑓𝑏,2 𝑓𝑎,1 𝑓𝑏,1 𝑓𝑎,2

Suppose 𝜑𝑀 is employed. Let 𝐼→𝑒𝑎,𝑅𝑎 be the instance where 𝑎 reports 𝑒′𝑎 = (𝑒′𝑓𝑎,1 =

1, 𝑒′𝑓𝑎,2 = 4) and 𝑅′
𝑎 = 𝑅𝑎. There are six possible orderings: 𝑧1 = 𝑎(1), 𝑎(2), 𝑏(1), 𝑏(2), 𝑧2 =

𝑎(1), 𝑏(1), 𝑎(2), 𝑏(2), 𝑧3 = 𝑎(1), 𝑏(1)𝑏(2), 𝑎(2), 𝑧4 = 𝑏(1), 𝑎(1), 𝑎(2), 𝑏(2), 𝑧5 = 𝑏(1), 𝑎(1), 𝑏(2), 𝑎(2),

𝑧6 = 𝑏(1), 𝑏(2), 𝑎(1), 𝑎(2). It is easy to check that each of these orderings realizes with prob-

ability 1
6
. Note that 𝑆𝑢𝑐 = {𝑠3, 𝑠4} at 𝐼 but 𝑆𝑢𝑐 = ∅ at 𝐼→𝑒𝑎,𝑅𝑎 . In 𝜑𝑀(𝐼), 𝑏(1) represents 𝑓𝑏,2

and 𝑏(2) represents 𝑓𝑏,1; in 𝜑𝑀(𝐼→𝑒𝑎,𝑅𝑎 ), 𝑏(1) represents 𝑓𝑏,1 and 𝑏(2) represents 𝑓𝑏,2. In both

instances, 𝑎(1) represents 𝑓𝑎,1 and 𝑎(2) represents 𝑓𝑎,2. Observe that Π1
𝑎 = Π

Φ𝜑𝑧
𝑘
(𝐼)(𝑎),⋆

𝑎
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for 𝑘 = 1, 2, 3; Π2
𝑎 = Π

Φ𝜑𝑧
𝑘
(𝐼)(𝑎),⋆

𝑎 for 𝑘 = 4, 5, 6; in addition, Π3
𝑎 = Π

Φ
𝜑𝑧

1
(𝐼→𝑒𝑎,𝑅𝑎 )

(𝑎),⋆
𝑎 ;

Π4
𝑎 = Π

Φ
𝜑𝑧

𝑘
(𝐼→𝑒𝑎,𝑅𝑎 )

(𝑎),⋆
𝑎 for 𝑘 = 2, 3, 4, 5; Π5

𝑎 = Π
Φ

𝜑𝑧
6
(𝐼→𝑒𝑎,𝑅𝑎 )

(𝑎),⋆
𝑎 .

𝑓𝑎,1’s expected delay given 𝜑𝑀⋆
𝑎 (𝐼) is 1

2
and given 𝜑𝑀⋆

𝑎 (𝐼→𝑒𝑎,𝑅𝑎 ) is
1
6
, so 𝜑𝑀 is not strategy-

proof. The expected delay of 𝑓𝑎,2 given 𝜑𝑀⋆
𝑎 (𝐼) is 0 and given 𝜑𝑀⋆

𝑎 (𝐼→𝑒𝑎,𝑅𝑎 ) is
5
6
.

Example D.6 and D.7:

For any instance 𝐼, let 𝐼→𝑆′,𝐹 ′
†,Φ

′
†,𝑛

′ denote the instance that is the same as 𝐼 except with

𝑆, 𝐹†,Φ† and 𝑛 replaced by 𝑆 ′, 𝐹 ′
†,Φ

′
† and 𝑛′, respectively. Let 𝐹 𝑎−𝑓

† be the resultant profile

after 𝐹𝑎 in 𝐹† is replaced by 𝐹𝑎 ∖ {𝑓}. If airline 𝑎 freezes 𝑓 ∈ 𝐹𝑎 in a slot 𝑠 ∈ 𝑆𝑎, the new

instance is 𝐼→𝑆∖{𝑠},𝐹𝑎−𝑓
† ,Φ𝑎−𝑠

† ,𝑛𝑎−1 .
10

Example D.6:

𝐹 𝑓𝑎,1 𝑓𝑎,2 𝑓𝑏,1

𝑒 1 1 1

𝑅 1 2 1̂︀𝑒 1 1̂︀𝑅 1 1

𝑆 𝑠1 𝑠2 𝑠3

Π1 𝑓𝑎,1 𝑓𝑎,2 𝑓𝑏,1

Π2 𝑓𝑎,1 𝑓𝑏,1 𝑓𝑎,2

Suppose 𝜑𝑀 is employed and 𝑆𝑎 = {𝑠1}. There are three possible orderings: 𝑧1 =

𝑎(1), 𝑎(2), 𝑏(1), 𝑧2 = 𝑎(1), 𝑏(1), 𝑎(2), and 𝑧3 = 𝑏(1), 𝑎(1), 𝑎(2). Each ordering realizes with

probability 1
3
. 𝑎(1) represents 𝑓𝑎,1 and 𝑎(2) represents 𝑓𝑎,2. 𝑓𝑎,1 always get 𝑠1. Observe that

𝑓𝑎,2 gets 𝑠2 given 𝑧1 and gets 𝑠3 otherwise, so the expected delay of 𝑓𝑎,2 given 𝜑𝑀⋆
𝑎 (𝐼) is 2

3
.

If 𝑎 freezes 𝑓𝑎,1 in 𝑠1, the resultant instance is 𝐼 ′ = 𝐼
→𝑆∖{𝑠1},𝐹

𝑎−𝑓𝑎,1
† ,Φ

𝑎−𝑠1
† ,𝑛𝑎−1

. There are

two possible orderings: 𝑧4 = 𝑎(1), 𝑏(1) and 𝑧5 = 𝑏(1), 𝑎(1). Each ordering realizes with

probability 1
2
. Now 𝑎(1) represents 𝑓𝑎,2. Observe that 𝑓𝑎,2 gets 𝑠2 given 𝑧4 and gets 𝑠3 given

𝑧5, so the expected delay of 𝑓𝑎,2 given 𝜑𝑀⋆
𝑎 (𝐼 ′) is 1

2
.

Example D.7:

𝐹 𝑓𝑎,1 𝑓𝑎,2 𝑓𝑏,1

𝑒 3 1 1

𝑅 1 2 1̂︀𝑒 1 1̂︀𝑅 1 1

𝑆 𝑠1 𝑠2 𝑠3

Π1 𝑓𝑎,2 𝑓𝑏,1 𝑓𝑎,1

Π2 𝑓𝑏,1 𝑓𝑎,2 𝑓𝑎,1

Suppose 𝜑𝑀 is employed and 𝑆𝑎 = {𝑠3}. There are three possible orderings: 𝑧1 =

𝑎(1), 𝑎(2), 𝑏(1), 𝑧2 = 𝑎(1), 𝑏(1), 𝑎(2), and 𝑧3 = 𝑏(1), 𝑎(1), 𝑎(2). Each ordering realizes with

probability 1
3
. 𝑎(1) represents 𝑓𝑎,2 and 𝑎(2) represents 𝑓𝑎,1. 𝑓𝑎,1 always get 𝑠3. Observe that

10To keep our notation simple, we do not replace 𝑒.
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𝑓𝑎,2 gets 𝑠2 given 𝑧1 or 𝑧2 and gets 𝑠3 given 𝑧3, so the expected delay of 𝑓𝑎,2 given 𝜑𝑀⋆
𝑎 (𝐼) is

1
3
.

If 𝑎 freezes 𝑓𝑎,1 in 𝑠3, the resultant instance is 𝐼 ′ = 𝐼
→𝑆∖{𝑠3},𝐹

𝑎−𝑓𝑎,1
† ,Φ

𝑎−𝑠3
† ,𝑛𝑎−1

. There are

two possible orderings: 𝑧4 = 𝑎(1), 𝑏(1) and 𝑧5 = 𝑏(1), 𝑎(1). Each ordering realizes with

probability 1
2
. Now 𝑎(1) represents 𝑓𝑎,2. Observe that 𝑓𝑎,2 gets 𝑠2 given 𝑧4 and gets 𝑠3 given

𝑧5, so the expected delay of 𝑓𝑎,2 given 𝜑𝑀⋆
𝑎 (𝐼) is 1

2
.

In both examples, 𝑓 = 𝑓𝑎,1 is the most important flight of 𝑎, and the earliest feasible

available slot for 𝑓 , 𝑠, is in 𝑆𝑎. If 𝑠 is a contested slot, then 𝑎 might be better off by freezing

𝑓 in 𝑠 as demonstrated in Example D.6. The reason is that putting 𝑠 and 𝑓 into the instance

would make 𝑎 “pay” the position of 𝑎(1) in 𝑧 to get 𝑠. By contrast, if 𝑠 is an uncontested

slot, then freezing 𝑓 in 𝑠 might make 𝑎 worse off, as demonstrated in Example D.7.

D.2 The Supplementary Algorithm

We suggest a supplementary algorithm for 𝜑𝑀 . Suppose 𝑧⋆ and 𝑧 realized in the random

ordering algorithm, and 𝜑𝑧(𝐼) is the realized landing schedule of 𝜑𝑀 . The induced slot

ownership function of 𝜑𝑧(𝐼) is Φ𝜑𝑧(𝐼). The following algorithm amends Φ𝜑𝑧(𝐼) by assigning an

additional 𝑀𝑎 slots to each 𝑎 ∈ 𝐴. Denote the resultant slot ownership function by Φ𝜑𝑧⋆ (𝐼).

For each 𝑎, eliminate each 𝑎(𝑖) with 𝑖 ≤ |𝐹𝑎| from 𝑧⋆ and denote the resultant ordering by

z1. Let 𝑉1 = 𝑆 ∖ 𝑆1. For 𝑡 ∈ {1, 2, ...}, repeat the following: Find 𝑠, which is the earliest

slot in 𝑉𝑡 ∩ 𝑆𝐴 that satisfies the following requirement: 𝑠 ∈ 𝑆𝑎 for some 𝑎 and 𝑎 has a

surrogate in z𝑡. Assign the slot to 𝑎 and remove the last surrogate of 𝑎 from z𝑡. Update

z𝑡 to z𝑡+1 and 𝑉 𝑡 to 𝑉 𝑡+1. Stop if no slot satisfies the above requirement. If there is no

remaining surrogate, stop; otherwise, denote the resultant ordering by z𝑇 and assign the

earliest unassigned slots to the airlines sequentially according to z𝑇 .

Example D.3 (continued):

Suppose 𝑆𝑎 = {𝑠4} and 𝑓𝑎,3 is another canceled flight of 𝑎. Suppose 𝑧
⋆ = 𝑎(1), 𝑎(2), 𝑏(1), 𝑎(3).

z1 = 𝑎(2), 𝑎(3). 𝑉1 = {𝑠1, 𝑠4, ...}. The earliest slot in 𝑉1∩𝑆𝐴 that satisfies the requirement is

𝑠4, so 𝑠4 is assigned to 𝑎 and 𝑎(3) is removed from z1. z2 = 𝑎(2) and 𝑉2 = {𝑠1}. 𝑉2 ∩𝑆𝐴 = ∅,
so z𝑇 = 𝑎(2). 𝑠1 is assigned to 𝑎.

References
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